

CPT Interpretation Soil Type

Peter K. Robertson

CPT in Geotechnical Practice

Santiago, Chile July, 2014

GUIDE TO CONE PENETRATION TESTING

Robertson & Cabal (Robertson)

5th Edition 2012

CPT Guide 5th Edition

Download *FREE* copy from:

www.greggdrilling.com www.cpt-robertson.com www.geologismiki.gr

Webinars

Recordings of previous webinars are available on YouTube: search for '*CPT Robertson*' or

http://www.youtube.com/watch?v=alrzeelWpZc

Unequal End Area Effects on q_c

$$\mathbf{q_t} = \mathbf{q_c} + \mathbf{u_2}(\mathbf{1} - \mathbf{a})$$

$$a = 0.60 \text{ to } 0.85$$

a = tip net area ratio $\sim A_n/A_c$

In sands: $q_t = q_c$

In very soft clays: correction to q_t is important

Cones should have high net area ratio a > 0.8

Role of CPT

CPT has three main applications:

- Determine sub-surface stratigraphy and identify materials present (Soil Type SBT)
- Estimate soil parameters
- Provide results for direct geotechnical design

Primary role is soil profiling and can be supplemented by samples, other in-situ tests and laboratory testing

CPTu Interpretation

Soil Type

Soil behavior type (SBT) & stratigraphy

In-situ State

- Relative density (D_r) or State Parameter (ψ) and OCR

Strength

- Peak friction angle (ϕ') and undrained strength (s_u)

Stiffness/compressibility

- Shear (G_o) , Young's (E') and 1-D constrained (M)

Consolidation/permeability

- Coeff of consolidation (c_v) and permeability (k)

First CPT 'soil classification' chart

Begemann (1965) type mechanical cone

CPT-based "classification"

- CPT measurements are influenced by *in-situ behavioral characteristics*, such as strength, stiffness and compressibility. These characteristics are controlled primarily by soil state, in-situ effective stresses, stress history, age, and cementation, as well as mineralogy.
- Traditional soil classification systems are based on *physical characteristics* obtained on *remolded samples*, such as grain size, fines content and plasticity. These characteristics are controlled primarily by depositional environment and geology.

Soil Behaviour Type (SBT) Chart

Zone	Soil behaviour type
1	Sensitive fine grained
2	Organic material
3	Clay
4	Silty Clay to clay
5	Clayey silt to silty clay
6	Sandy silt to clayey silt
7	Silty sand to sandy silt
8	Sand to silty sand
9	Sand
10	Gravelly sand to sand
11	Very stiff fine grained*
12	Sand to clayey sand*

^{*} Overconsolidated or cemented

SBT

Robertson & Campanella, 1986

CPT - Soil Behavior Type (SBT)

Non-Normalized Classification Chart

CPT SBT based on insitu soil behavior (strength, stiffness, compressibility) - not the same as classification based Atterberg Limits and grain size carried out on disturbed samples

Robertson & Campanella, 1986

Note: 1 bar ~ 1 tsf ~ 0.1 MPa

CPT Data Presentation

Normalized SBTn Charts

Zone Soil behaviour type

- 1. Sensitive, fine grained;
- 2. Organic soils-peats;
- 3. Clays-clay to silty clay;

Zone Soil behaviour type

- 4. Silt mixtures clayey silt to silty clay
- 5. Sand mixtures; silty sand to sand silty
- 6. Sands: clean sands to silty sands

Zone Soil behaviour type

- 7. Gravelly sand to sand;
- 8. Very stiff sand to clayey sand
- 9. Very stiff fine grained

Dimensionless SBT chart

In 2010 Robertson
(CPT'10) updated the
SBT chart to use
dimensionless
parameters and to
simplify the chart to 9
zones to be consistent
with the normalized
SBT chart (Robertson,
1990)

 $p_a = atmospheric pressure = 100$ kPa = 1 tsf

Proposed common SBT zones

SBT zone Robertson et al (1986)	SBTn zone Robertson (1990)	Proposed common SBT description
1	1	Sensitive fine-grained
2	2	Clay: organic soil
3	3	Clays: clay to silty clay
4 & 5	4	Silt mixtures: clayey silt & silty clay
6 & 7	5	Sand mixtures: silty sand to sandy silt
8	6	Sands: clean sand to silty sand
9 & 10	7	Dense sand to gravelly sand
12	8	Stiff sand to clayey sand*
11	9	Stiff fine-grained*

Robertson, 2010

Why Friction Ratio (f_s/q_t) ?

 $Q_t = (q_t - \sigma_{vo})/\sigma'_{vo}$

 $F_{\rm r} = 100[f_{\rm s}/(q_{\rm t}-\sigma_{\rm vo})]$

 $F = \overline{100(f_s/\sigma'_{vo})}$

Normally to OC consolidated clay, friction ratio, F_r ~ constant

Tumay Fuzzy-logic SBT

Applies
fuzzy
logic to
SBT

Schneider et al (2008) chart

Combines normalized cone resistance (Q) and excess pore pressure ($\Delta u/\sigma'_v$) Good offshore – less effective on-shore, where saturation can not be assured

Compare pore pressure charts

Schneider et al, 2008

Modified Robertson (1990)

Generalized CPT Soil Behaviour Type

CPT Soil Behaviour

A: Coarse-grain-dilative

B: Coarse-grain-contractive

C: Fine-grain-dilative

D: Fine-grain-contractive

CPT SBT Index, I_c

Soil Behavior Type Index, I_c

 $Ic = [(3.47 - \log Q)^2 + (\log F + 1.22)^2]^{0.5}$

Function primarily of Soil Compressibility

 $I_c > 2.60$ predominately fine grained 'clay-like' soil

SBT from CPT

Plasticity Index as function of SBT I_c

Boundary between sand-like and clay-like soils is PI ~ 10

When $I_c < 2.60$ 95% samples NP 84% with PI < 12%

Data from Cetin & Ozan, 2009

CPT Normalization

Early normalization based on theory for clays

$$Q_{t} = (q_{t} - \sigma_{v}) / \sigma'_{v}$$

 Recently normalization based on soil type, density and stress level

$$Q_{tn} = [(q_t - \sigma_v)/p_a] (p_a/\sigma'_v)^n$$

Where:

 $(q_t - \sigma_v)/p_a$ = dimensionless net cone resistance, $(p_a/\sigma'_v)^n$ = stress normalization factor n = stress exponent that varies with soil type, density & stress level p_a = atmospheric pressure in same units as q_t and σ_v

CPT Normalization

$$Q_{tn} = [(q_t - \sigma_v)/p_a] (p_a/\sigma'_{vo})^n$$

$$n = 0.381 (I_c) + 0.05 (\sigma'_{vo}/p_a) - 0.15$$

where $n \le 1.0$

If stress normalization correct - no need for additional stress level corrections (e.g. $K_{\rm s}$)

Compare stress normalization

Example CPT - UBC Fraser River

Project: UBC McDonalds Farm

P.K. Robertson Gregg Drilling & Testing Inc www.greggdrilling.com

Fraser River Delta, Vancouver, BC (UBC) Campanella & Robertson, 1983

CPT: UBC McD Farm, Canada

Total depth: 29.35 m

Example CPT - UBC Fraser River

P.K. Robertson Gregg Drilling & Testing Inc www.greggdrilling.com

Fraser River Delta, Vancouver, BC (UBC) Campanella & Robertson, 1983

Project: UBC McDonalds Farm Location: Vancouver, Canada CPT: UBC McD Farm, Canada Total depth: 29.35 m, Date: 12/4/2012

Example CPT - Venice Lagoon

P.K. Robertson Gregg Drilling & Testing Inc www.greggdrilling.com

Venice Lagoon, Treporti Test Site Simonini et al, 2003

CPT: Venice lagoon, Italy
Total depth: 45.67 m

Example CPT - Venice Lagoon

P.K Robertson Gregg Drilling & Testing Inc www.greggdrilling.com

Venice Lagoon, Treporti Test Site Simonini et al, 2003

Project: Venice Lagoon, Italy Location: Venice, Italy CPT: Venice lagoon, Italy
Total depth: 45.67 m, Date: 11/27/2012

Example CPT

Project: Example CPT
Location: California

P.K. Robertson Gregg Drilling & Testing Inc www.greggdrilling.com

Mixed soil profile San Francisco Bay area, USA

CPT: CPT 1
Total depth: 30.50 m

Example CPT

Project: Example CPT

P.K. Robertson Gregg Drilling & Testing Inc www.greggdrilling.com

Mixed soil profile San Francisco Bay area, USA

CPT: CPT 1

Total depth: 30.50 m, Date: 12/12/2012

How deep can you push the CPT?

Depends on:
1 - amount of reaction
 push force
2 - amount of rod
 friction

With 15 cm² cone (10cm² push rods) and 200 kN (20 tons) reaction – can penetrate soil with SPT (N)₆₀ > 100

Example CPT - Mine Tailings

P.K Robertson Gregg Drilling & Testing Inc www.greggdrilling.com

Deep Mine Tailings Southwest, USA

Project: Mine Tailings Example

Location: USA

CPT: Mine Tailings
Total depth: 101.05 m

Example CPT - Mine Tailings

P.K Robertson Gregg Drilling & Testing Inc www.greggdrilling.com

Deep Mine Tailings Southwest, USA

Project: Mine Tailings Example

Location: USA

CPT: Mine Tailings
Total depth: 101.05 m, Date: 8/9/2012

Example CPT - Soft Rock

P. K. Robertson Gregg Drilling & Testing Inc www.greggdrilling.com

Project: Stiff soil - soft rock Location: Newport Beach, CA, USA Very stiff soil – soft rock Newport Beach, CA, USA

CPT: Newport Beach, CA

Total depth: 15.85 m

Example CPT - Soft Rock

P.K. Robertson Gregg Drilling & Testing Inc www.greggdrilling.com

Project: Stiff soil - soft rock Location: Newport Beach, CA, USA Very stiff soil – soft rock Newport Beach, CA, USA

CPT: Newport Beach, CA Total depth: 15.85 m, Date: 12/12/2012

Summary

- CPT is a fast, reliable method to determine soil stratigraphy and soil type in a cost effective manner.
- CPT-based Soil Behaviour Type (SBT) charts available to estimate soil type, based on either tip-friction and/or tip-pore pressure measurements
- CPT equipment can be used to take small diameter push-in soil samples to verify soil type