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1. Introduction

Sill mats are structural elements that provide support in under-
ground mining (Fig. 1). In vertical or sub-vertical orebodies, an ore sill
pillar is replaced by a sill mat counterpart when the economic benefit is
positive, such as when the ore grade is enough to make positive earn-
ings. A sill mat is constructed using multiple batches of cemented rock
fill or pastefill (cemented tailings) placed into the previously mined ore
sill pillar to a predefined height derived from its design. Sill mats may
or not be anchored to the hanging and foot walls, and usually are suf-
ficiently long in the longitudinal direction making a two-dimensional
analysis appropriate to be performed. When the underlying stope is
removed, the load of the unconsolidated backfill that rests on top of the
sill mat and its self-weight must be supported by this structural element.
Therefore, a correctly designed sill mat should be stable under these
loads, allowing the safe operation of mining personnel and equipment
underneath it. The proper design of these mining structures requires the
correct determination of the vertical stresses to be supported by the sill
mat and the structural capacity required to withstand these loads.

In practice, sill mats are constructed based on two main approaches;
experience, and engineering principles. From an engineering point of
view, it has been considered beam theory or solid mechanics theory,
numerical modelling, physical modelling (centrifuge modelling in some
cases).1–6 Analytical theory consider sill mats as structural elements
that may fail under sliding, flexural, rotation, or caving modes of
failure.1 One of the main types of failure is the flexural failure, and the
deduction of its analytical equation considers classical beam theory
applied to this mining problem.2 Further in this work is examined the
applicability of this theory to this mining design.

Data of actual geometry and material properties of sill mats used in
mining can be found in 3,4,6,7 and 8 and are shown in Table 1.

2. Analytical interpretation of flexure failure based on classical
beam design

Vertical load (σv) causes the sill mat to bend, meaning that the upper
surface must be shorter than the lower surface or vice versa depending
of the applied load. Therefore, the strain are different along the sill mat,
and because the stress is directly proportional to strain, it follows that
the stress will vary through the depth of the mat. This bending creates a
compressive stress in the upper portion and a traction in the lower
portion of the sill mat (or vice versa depending on location). In be-
tween, there is a plane where its elements are neither stretched nor
compressed, called the neutral plane. Since the constructing materials
used to fabricate the sill mats have larger compressive strength than
tensile strength, failure starts when the tensile stresses reach the ulti-
mate tensile strength of the material (σt).

As mentioned previously, flexural failure considerations using beam
theory provides the designer with a simple tool to analyze sill mat
stability. In 1 is considered that “a wide sill mat would, quite obviously,
be susceptible to flexural failure due to the relatively low tensile
strength of cemented tailings”. He proposed the standard formulae for a
fixed end uniformly loaded beam (as shown in Fig. 2).

Considering the maximum moment (Mmax) generated at both ends
(Fig. 2a), Mitchell proposed that failure occurs when the maximum
traction on the sill mat (σmax) reaches the maximum tensile strength
(σt), σt = σmax.

When solving the value of σmax, generated by the vertical uniform
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load σv (Figs. 1 and 2) under the adequate boundary conditions, it will
be established that the geometrical condition for flexure failure will
initiate at both ends of the beam, as it is shown in Fig. 2b, is given by:
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σ σ σ2( )/t c v

2

(1)

where σt is the tensile strength of the sill mat and σv is the uniform
loading which should include its self-weight. σc is the compressive stress
applied to both ends of the beam. Thereafter, failure by traction is
observed at the center of the beam as it is shown in Fig. 2c.

Eq. (1) is deduced using the Euler-Bernoulli bending theory or
simple beam theory. The use of this theory involves the following hy-
potheses. (a) The load acting is normal to its surface. (b) Deflections are
small in comparison with the thickness of the beam/plate (or Sill Mat).
(c) The cross section is assumed to remain perpendicular to the axis
direction. (d) The weight of the beam/plate can be included in the load
σv. (e) Also, the problem is considered as a state of plane stress, in which
the normal stress σz, and the shear stresses σxz and σyz are also assumed
to be zero. According to the hypothesis mentioned before, the general
beam equation will be deduced in the following paragraphs.

Fig. 2 shows a cross section of the beam where there is a zone in
traction and the opposite side in compression. In between, there is a
neutral axis, where there is no axial deformation. Considering “uz” = w
as the vertical deflection of the neutral axis, the deformation in the
cross section of the beam in the x direction is given by:

= −u zψ x( )x (2)

As the plane AB remains perpendicular to CD (Euler-Bernoulli as-
sumption) then:

=ψ dw dx/ (3)
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Then assuming = = = =σ σ σ σ 0yy zz xy yz the stress-strain relation-
ships give
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Then for equilibrium of momentum:
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⇒ = −σ Mz I/xx (9)

where I is the second moment of inertia, and z is the distance from the
neutral axis of the beam.

Additionally,
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4 (10)

where σz is the applied force/unit length on the beam in the z di-
rection (or σv for this example).

Solving the above equations for the corresponding boundary con-
ditions, the deflection w, the shear stress V, and the moment M on a
beam with both ends fixed can be obtained. For this analysis the sill mat
is considered with both ends fixed (as shown in Fig. 2), then it becomes
a statically indeterminate beam problem. Therefore to obtain the so-
lution for this beam the static equilibrium is used and considering
known values of slope and deflection at particular beam sections, the
solution for maximum moment located at both ends is given by9:

= σ LM /12vmax
2 (11)

and the moment at the center of the beam is:

= σ LM /24vmax
2 (12)

Consequently the maximum traction will be located at both ends
and has a value derived from Eq. (1):
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Failure will initiate on both ends of the beam (or sill mat). Once
these two points show plastic deformation, the center of the beam will
start failing as shown in Fig. 2.

Considering that an additional compressive force is applied to the
beam (σc) the maximum applied traction is: (σmax - σc) and in order to be
stable, the tensile strength σt has to be greater than σmax - σc, then Eq.
(1) can be deduced directly in 1.

In many simulations, the evaluation of flexure failure has been
performed using this simple equation. However, in sill mat design the
problem is closer to a plane strain than a plane stress approximation.
This is due the fact that the longest dimension of the sill mat is much
larger than the span. Additionally, the other hypothesis used to derive
this equation will be discussed further after numerical model results are
shown. More details about Euler-Bernoulli beam theory can be found in
9–11.

3. Numerical modelling approach for sill mats

FLAC 2D version 7 was the numerical modelling code employed for
modelling and estimating the factor of safety of different sill mat geo-
metries under varying strength properties. FLAC uses a finite difference
approach that allows the use of different constitutive models to re-
present rock mass or any other material as a continuum in order to
determine its behavior under the loads being applied. Fig. 3 shows the
mesh used in the numerical model. The dimensions of the elements of
the mesh is maintained constant independently of the size of the
modelled sill mat. The unit weight of the backfill material was imposed
at very low value since the vertical load σv takes into consideration the
self-weight of the sill mat.

Only flexure resistance of the sill mat (tensile failure) will be con-
sidered in this analysis. Therefore, shear strength will be imposed at

Fig. 1. Schematic representation of sill mats.
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much higher values than the expected strength of actual Sill Mat ma-
terial, using Mohr-Coulomb model with high values of cohesion (c =
60 MPa) and friction angle (ϕ = 38°), to avoid shear failure. Therefore,
tensile resistance (σt) is considered as the main strength parameter in
the model, as in the analytical model explained previously.
Consequently, only the flexure failure mode is compared using the
analytical and numerical modelling results. In both cases the onset of
failure is achieved when the traction on layers of the sill mat exceeds
the tensile strength of the material (σt), which is reduced in the nu-
merical model until failure is reached.

Multiple sill mat geometries are evaluated considering different
aspect ratios L/d (see Table 2). Vertical load σv applied to the top layer
of the sill mat is assumed constant and equally distributed along the top
surface of the sill mat and is set at 1.0 MPa. Other studies previously
carried out have estimated this load (σv) as it is shown in 3,4, so the
applied load is in the expected range. Even though this work uses a
constant vertical load σv, the conclusions obtained are still valid for
other loads, as the maximum tension on the sill mat will increase
proportionally to σv in the analytical and numerical model. A value of
σtBeam/σtNM = 100.00 is assumed when failure is not reached

4. Results and discussion on the validity of the use of classical
flexure failure equations on sill mat design

Numerical models are performed to compare its results with the
corresponding analytical equation previously shown. The comparison is

performed in terms of the required tensile strength (σt) using both
methods.

Therefore for a given geometry, the minimum σt derived using the
classical beam equation1 that defines the onset of flexural failure on the
sill mat is σtBeam. On the other hand, the same geometry is numerically
modelled using the approach previously explained. The tensile strength
of the material is initially specified at a higher value than the value
obtained by Mitchell's equation. In the numerical model for a given L/d
ratio if the imposed tensile strength does not cause flexural failure, then
the tensile strength σt is decreased until failure is achieved. The onset of
σt at failure by flexure using the numerical modelling procedure is de-
fined as σtNM. This approach is repeated for different L/d ratios. The
results of the ratio σtBeam/σtNM for all combinations shown in Table 2 is
shown in Fig. 4, for a Poisson's ratio of 0.3 being a reasonable value for
sill mat materials.

Fig. 4 shows that the ratio σtBeam/σtNM are closed to 1.0 when the
ratio L/d is larger than 8.5, even though these values start to increase
slightly for larger values of L/d. Also, it can be observed that for L/d
ratios lower than 8.5 the σt value obtained analytically at the onset of
failure is higher than the value obtained by numerical modelling. This
means that for values of L/d smaller than 8.5, Mitchell's equation is
considerably more conservative than the numerical modelling results,
as the σt values to maintain sill mat stability are larger.

These results complement the conclusion obtained previously by 1,
where for values of L/d between 2.33 and 2.63 (see Fig. 4) centrifuge
models also showed no failure by flexure even though analytical

Fig. 2. Yielding points according to classical beam
theory.

Fig. 3. Modelling mesh showing elements, fixed boundaries and
loads (five grid elements per meter).
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predictions forecast failure.
Modelling results are shown for four different cases as the one de-

picted in Fig. 5. Fig. 5 shows the result for case A when the ratio L/d is
equal to 10.0, and Fig. 6 shows the case when the ratio L/d is equal to
16.0 (Case B). It can be observed from the numerical modelling that in
both cases (A and B), the failure mechanism is very close to the classical
theoretical flexure failure in beams (Fig. 2). First, two tensile failure
zones are developed at both ends of the sill mat followed by a third
point of failure observed at the center of the beam (second maximum
moment).

As values of L/d become larger, the deflection of the sill mat is
larger. Therefore, for large L/d ratios (> 12.0), the hypothesis of small
deflections used for deriving the flexural failure analytical equation is

not completely correct.
Case C shows the results for a sill mat with L/d = 8.5 ratio (Fig. 7).

It can be observed that flexural failure still develops, however boundary
forces start becoming very important in the solution and therefore in-
fluences the maximum tensile loads on the sill mat.

Case D shows the results of numerical model for L/d = 5 (Fig. 8),
where it was not possible to attain flexural failure even for zero values
of σt. In this case, boundary conditions affects not only the boundaries
of the sill mat but all the structure. This type of load concentrations has
been explained using St. Venant´s principle. Previous work has shown
difficulties to predict stresses in the boundary zone as it is shown in
12–14.

Figs. 9 and 10 shows the horizontal stresses in cases C and D. In the
case of short sill mats (case D) the applied vertical stress generates

Table 2
Comparison of modelling (σtNM) and analytical (σtBeam) tensile strength results.

Length L
(m)

Height d
(m)

Aspect
Ratio L/d

σc (MPa) σtNM
(MPa)

σtBeam
(MPa)

Ratio
σtBeam/σtNM
()

20.0 4.50 4.4 4.53 0.0 5.3 100.00
20.0 4.00 5.0 5.75 0.0 6.8 100.00
20.0 3.00 6.7 10.77 0.0 11.5 100.00
40.0 5.75 7.0 9.53 1.0 14.7 14.67
20.0 2.50 8.0 14.78 1.0 17.2 17.22
39.0 4.75 8.2 17.93 2.0 15.8 7.89
29.0 3.50 8.3 16.18 2.5 18.1 7.26
27.0 3.25 8.3 16.70 3.0 17.8 5.94
25.0 3.00 8.3 17.25 4.0 17.5 4.37
23.0 2.75 8.4 15.62 10.0 19.4 1.94
21.0 2.50 8.4 16.00 9.0 19.3 2.14
17.0 2.00 8.5 15.92 14.0 20.2 1.44
30.0 3.50 8.6 2.60 29.0 34.1 1.18
40.0 4.50 8.9 10.40 33.0 29.1 0.88
29.0 3.00 9.7 2.45 38.0 44.3 1.17
40.0 4.00 10.0 1.08 48.0 48.9 1.02
20.0 2.00 10.0 5.19 33.0 44.8 1.36
25.0 2.50 10.0 3.39 33.0 46.6 1.41
32.0 3.00 10.7 1.44 51.0 55.4 1.09
33.0 3.00 11.0 1.07 53.0 59.4 1.12
32.0 2.75 11.6 0.56 54.0 67.1 1.24
36.0 3.00 12.0 0.56 56.0 71.4 1.28
28.0 2.25 12.4 0.29 55.0 77.1 1.40
26.0 2.00 13.0 1.02 55.0 83.5 1.52
28.0 2.00 14.0 3.65 59.0 94.4 1.60
30.0 2.00 15.0 6.66 60.0 105.8 1.76
40.0 2.50 16.0 11.67 66.0 116.3 1.76
36.0 2.00 18.0 19.30 64.0 142.7 2.23
40.0 2.00 20.0 26.33 67.0 173.7 2.59

Fig. 4. Ratio of deduced sill mat using beam theory and numerical modelling (Poisson's
ratio = 0.3).

Fig. 5. Case A Aspect ratio L/d = 10.

Fig. 6. Case B Aspect ratio L/d = 16.
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horizontal stresses that decrease the expected traction due to flexion in
the ends of the sill mat. This implies that flexural failure is not gener-
ated in case D.

Fig. 11 shows a comparison of the σtBeam/σtNM ratio for three dif-
ferent values of the Poisson's ratio: 0.3, 0.4999 and 0.0001. It is ob-
served from this figure that even though there are some changes in the
ratio between analytical and numerical values necessary to trigger
failure by flexure, the general trend commented previously is main-
tained independent of the Poisson ratio used in the numerical model.

Therefore, from the numerical modelling results obtained, it is
possible to assume that for boundary conditions considered in flexure
failure, that is fixed at both ends of the sill mat, it is not possible to
obtain failure for ratios of L/d lower than 6.7. Using Mitchell's flexural
equation for beams with both ends fixed will result in a very

conservative approach for values of L/d between 6.7 and 8.5. On the
other hand, Mitchell's equation will only produce slightly conservative
results for values of L/d between 8.5 and 20.0 and consequently it could
be used for design according to the results shown in this work. For
larger values of L/d the deflection of the sill mat is significant and so
Mitchell's equation starts to yield more conservative results as it as-
sumes small deformations.

Additionally, when the historical sill mat data (from 4 and 7) is
compared against the modelling results, it is observed that actual sill
mat geometries are within a range where the traditional flexure equa-
tion is too conservative, or flexure failure does not developed at all
(Fig. 12) or at the most, its use is too conservative.

Fig. 7. Case C aspect ratio L/d = 8.5.

Fig. 8. Case D aspect ratio L/d = 5.

Fig. 9. Case C – horizontal stress σxx (MPa) for aspect ratio L/d =8.5.

Fig. 10. Case D – horizontal stress σxx ((MPa) for aspect ratio L/d =5.
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5. Conclusions

In this work was analyzed the range of validity of Mitchell's flexure
failure equation for sill mats considering both ends fixed. The validity
of Mitchell's equation was established using numerical modelling

results. The following conclusions are based on the results of numerical
models involving different geometries for sill mats.

These results showed that flexure failure will unlikely develop for
ratios of L/d lower than 6.7. The use of analytical formulae to obtain
the factor of safety of a sill mat in this range is highly conservative.
Saint Venant´s principle explain the fact that no failure by flexure is
obtained for values of L/d<6.7. Higher horizontal stresses are ob-
served in these cases as the boundary effect is strong in these cases.

Sill mats with values of L/d between 6.7 and 8.5 will yield con-
servative results. These will be more conservative as the value of L/d is
closer to 6.7. On the other hand, Mitchell's equation will produce
slightly conservative results for values of L/d between 8.5 and 20.0 and
consequently it could be used for sill mat design according to the results
shown in this work. For larger values of L/d, that is greater than 12, the
deflection of the sill mat is significant and thus Mitchell's equation
yields conservative results as it assumes the hypothesis of small de-
formations. Most of the actual geometries from mines fall in the zone
where no failure by flexure is expected. The Mitchell equation must be
used considering this fact.
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